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Abstract—DPI technology has been widely deployed in net-
working intrusion detection system (NIDS) to detect attacks or
viruses. State-of-the-art NIDS uses deterministic finite automata
(DFA) algorithms to perform regular expression matching for
its stable matching speed. However, traditional DFA algorithm’s
throughput is limited by the input character’s width (usually one
character per time). Although the multi-stride method (process
multiple characters per time) can increase the throughput, it
leads the DFA transition table to an exponentially increased
memory consumption. In this paper, we propose a novel multi-
stride regular expression matching engine called PiDFA based on
Field-Programmable Gate Array (FPGA). It applies two methods
to solve traditional multi-stride algorithms’ memory explosion
problem: DFA Transition Merging method and top-k state extrac-
tion method. Experiment results show that PiDFA achieves more
than 30-fold better performance than original DFA algorithm.
Whats more, PiDFA is orthogonal to existing transition table
compression algorithms. Implemented with PiDFA algorithm,
ClusterFA’s matching speed is increased by 6-50 times while
maintaining ClusterFA’s low memory consumption.

Keywords—Regular Expression Matching; Deep Packet Inspec-
tion; DFA; FPGA

I. INTRODUCTION

Regular expression (regex) plays an important role on
modern networking intrusion detection systems (NIDSs). It is
widely used in state-of-the-art systems for detecting intrusion
and virus attacks, including L7-filter [1] and Snort [2]. Usu-
ally, regex rules can be converted to non-deterministic finite
automata (NFA) and DFA. Many systems implement regex
matching engine based on DFA algorithm for its guaranteed
worst-case performance (O(1) time per character). However,
DFA algorithms suffer from the state blowup problem. Many
previous works have been presented to reduce the memory
consumption of DFA algorithm by using the compression
mechanism. Although compression mechanism is an effec-
tive way to reduce memory consumption, it results in low
throughput. Because compression mechanism leads to multiple
states’ traverse processing per input character. The multi-stride
method is one way to increase the regex matching engine’s
performance by processing multiple input characters per time.
However, it is not feasible to implement in NIDS practically
for its huge memory requirement.

To solve multi-stride algorithms’ memory explosion prob-
lem, in this paper we present a novel regex matching acceler-
ating method called PiDFA (parallel-input DFA). PiDFA takes
the advantage of the parallelism of FPGA to accelerate regex
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matching by inputting multiple characters per time. Through
consuming k characters per time in pipeline, PiDFA yields a k-
fold performance improvement than original DFA algorithm.
We apply two methods in PiDFA: DFA Transition Merging
(DFA-TM) method and top-k state extraction method.

The DFA-TM takes advantage of the parallelism and
pipeline of FPGA hardware. It is influenced by the idea of “Di-
vide and Conquer” and is somehow like the method of “Merge
Sort”. Firstly, the PiDFA engine reads k characters in parallel
, then transmits the k characters to the transition merging
module. The transition merging module constructs temporary
merging transition tables according the input characters. When
finishing merging, PiDFA picks out the right results from the
last merging transition table. Since the method of DFA-TM
run in pipeline, PiDFA can achieve high performance.

The top-k state extraction method is another important
technique in PiDFA. If processing large amount of states, it
is hardly to implement PiDFA on FPGA effectively for the
extremely complex routing and layout problem. For example,
when processing 1024 states for 4-character input DFA, we
spent more than one week to construct the corresponding
PiDFA on a server with 32-core CPU and 64GB memory
space. The top-k method utilizes the locality of DFA transition
table that there are only a few states be traversed frequently
when scanning a sample of real world traffic. We extract the
few most frequent states and their corresponding transitions to
implement by the DFA-TM method. Then we store the less-
frequently states and their corresponding transitions into the
BlockRAM of FPGA. In this way, we greatly simplify the
layout complexity of PiDFA when implementing on FPGAs.

Beyond that, PiDFA is orthogonal to the DFA transition ta-
ble compression algorithms. We significantly improve existing
DFA compression algorithm’s performance by applying PiDFA
to it. In this paper, we choose the ClusterFA algorithm to
modify and get a better throughput by one order of magnitude.

In particular, the contributions of this paper are summarized
as follows:

(1) We propose the PiDFA algorithm to accelerate the
regular expressing matching speed. By the DFA-TM
method and the top-k state extraction method, PiDFA
yields 6-50 times performance increase than original
DFA algorithm.

(2) We apply the PiDFA scheme to the DFA transi-
tion table compression algorithm. Implementation on
ClusterFA show that PiDFA is orthogonal to existing
DFA compression algorithms. The modified Clus-
terFA algorithm achieves 30-fold performance im-
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provement while remaining ClusterFA’s low memory
consumption.

The rest of this paper is organized as follows. Section
II discusses the previous work related to regular expression
matching. Section III presents the detail of PiDFA. Section IV
describes the complete architecture of PiDFA engine imple-
mented on FPGA. Section V analyzes the experiment results
of PiDFA. Finally, section VI concludes this paper.

II. RELATED WORK

Regex matching is initially studied as a topic in automaton
theory and formal theory in the context of theoretical computer
science [3]. Recently, many works have been proposed to
promote regex matching, especially DFA algorithm’s practical
application in NIDS. Currently, researches on regex matching
mainly focuses on two aspects: One is to reduce the memory
consumption of regular expression automaton, the other is to
improve the throughput of regular expression matching engine.

There are a lot of compression strategies to reduce the
memory consumption of regex transition table. Kumar et al.
[4] observe the similarity of transitions between two states
and applying default transitions to compress DFA transition
table. At the expense of accessing memory multiple times
per input character, D2FA reduces transitions by more than
95% compared to original DFA. Becchi et al. in [5] propose
a DFA compression algorithm, called A-DFA. By quantifying
a states distance from the initial state, A-DFA results in at
most 2N state traversals when processing a string of length
N . In comparison to the D2FA method, A-DFA yields a
comparable compression ratio and has lower complexity. QI
Y et al. [6] propose a solution named FEACAN for front-end
acceleration of content-aware network processing. FEACAN
uses a two-dimensional DFA compression algorithm to reduce
the memory consumption and designs a hardware lookup
engine to enhance the matching speed. L. Jiang et al. [7]
present a new structure, called ClusterFA. This algorithm uses
the clustering algorithms to cluster the similar states together
and calculate a common state for each cluster. In this way,
ClusterFA achieves memory consumption by more than 95%.

Besides, some works focus on improving the performance
of regex matching engines. Dharmapurikar et al. [8] present
a bloom-filer method to optimize the regex automata. By
consuming multiple input characters per time, this algorithm
achieves higher throughput than original DFA with moderate
memory consumption. Brodie et al.[9] use Multi-stride DFAs
to increase the throughput of regex matching. Specially, a
stride-k DFA consumes k characters per state transition, thus
yielding a k-fold performance increase. However, Multi-stride
DFAs lead to an exponentially increased memory requirement
in the worst case. In order to solve the huge memory consump-
tion of k-DFA, Michela Becchi et al.[10] use the methods
of alphabet-reduction and default transition compression to
compress the k-DFA. What’s more, their method can avoid
troublesome memory size requirements during constructing
the automaton. Experimental results show that more than
800 complex regexes can be implemented on an FPGA. But
using compression algorithms to compress k-DFA leads to the
performance of k-DFA decrease. Y. Liu et al. [11] propose the
NFA-OBDDs algorithm to efficiently process sets of NFA fron-
tier states by using ordered binary decision diagrams. By stride

Fig. 1. DFA transition table: the state-set is {1,2,3} and the alphabet set is
{a,b,c,d,e}.

Fig. 2. Traditional DFA process input characters in sequence: the initial state
S0 = 1, the byte stream T = “abcd”.

doubling, NFA-OBDD can extends to k-stride NFA-OBDD
easily. However, NFA-OBDDs only conduct experiments for
k = 2. Because it is limited by the memory consumption for
larger values of k.

The multi-stride method is widely used in previous works
to improve the performance of regular expression matching
engines. However, suffering from the state explosion problem,
the multi-stride method is usually used as a complimentary
approach, and is hardly implemented in practical applications.
In the following sections, we will propose a practical k-stride
regular expression matching algorithm, getting a high perfor-
mance while retaining efficiency in memory consumption.

III. DETAIL OF PIDFA

This section is divided into two parts. Part I describes the
method of DFA-TM and discusses its benefits and weakness.
Part II describes the model and the lookup procedure of PiDFA.

A. Part I : the DFA-TM method

1) An example for traditional DFA lookup

In order to describe the lookup procedure of PiDFA,
traditional DFA lookup method that processes input characters
in sequence is given firstly. Regex rules can be compiled into
a DFA transition table, as shown in Fig.1. The DFA transition
table has two dimensions. One is the alphabet dimension and
the other is the state dimension. Supposing the initial state S0
was equal to 1. If given a byte stream T = “abcd”, the lookup
procedure can be illustrated in Fig.2. The initial state S0 tra-
verses to state 0 after consuming character ‘a’ of T . And then
state 0 traverses to itself after consuming character ‘b’. After
consuming character ‘c’, the state 0 traverses to state 2. In the
end, state 2 traverses to state 1 after consuming character ‘d’.
The lookup procedure is represented as (1, 0)(0, 0)(0, 2)(2, 1).
In another word, (1, 0) represents state 1 traverses to state 0.
(0, 0) represents state 0 traverses to state 0. (0, 2) represents
state 0 traverses to state 2. The last bracket (2, 1) represents
state 2 traverses to state 1. So the traverse path of T = “abcd”
is (1, 0)(0, 0)(0, 2)(2, 1).

2) An example to explain the method of DFA-TM

The example to explain DFA-TM is a dynamic lookup
process. It uses parallel characteristic of FPGA to accelerate
the lookup process. There are 7 boxes in total: I, II, III, IV,
V, VI, VII. In every box, the first column in red color is



Fig. 3. Get the corresponding columns from DFA transition table by T
(“abcd”), and fill them into corresponding box.

Fig. 4. The box I merging transitions with the box II; the box III merging
transitions with the box IV.

the ascending sequence numbers, which are the same as the
sequence numbers of states in the DFA transition table in
Fig.1. Now we input a byte stream T = “abcd”. Then we
search the DFA transition table by each character of T and
select the corresponding columns from DFA transition table
to fill in box I, II, III, V respectively, as shown in Fig.3.
For example, we use character ‘a’ to select the first column
from DFA transition table, and then we fill the ascending
sequence numbers and the selected column into box I. The
other characters ‘b’ , ‘c’ and ‘d’ do this procedure by the same
way. In order to facilitate explaining our follow-up work, we
add the brackets for each row. In each pair of brackets, the left
is the sequence number, and the right is the outgoing transition
of each character corresponding to the column in the DFA
transition table.

Next, as shown in Fig.4, we use the box I to connect to
the box II, and the box III to connect to the box IV. The black
arrow represents connecting operator. It means binding two
rows into a row. For example, by binding the 1-th row of the

Fig. 5. Merging transitions between the box I and the box II, then put the
results into the box V; merging transitions between the box III and the box
IV, then put the results into the box VI.

Fig. 6. The box V merging transitions with the box VI.

Fig. 7. Merging transitions between the box V and the box VI, then put the
results into the box VII.

box I (i.e. (1, 0)) and the 0-th row of the box II (i.e. (0, 0)), we
get a new row (1, 0)(0, 0). Now we explain how to connect the
box I to the box II. Connecting operator must follow this
principle: the i-th brackets of the box I (i.e. the i-th row of the
box I) uses its right value to connect to the j-th brackets of
the box II (i.e. the j-th row of the box II), whose left sequence
number is equal to the right value of the i-th brackets of the
box I. After connecting, we put the new row into the i-th row
in the box (i.e. box V in Fig.5). For example, we use the 0-th
row of box I (i.e. (0, 0) ) to connect to the 0-row of box II (i.e.
(0, 0) ), as the right value of the 0-th row of box I is equal
to the left sequence number of the 0-th row of box II. After
connecting, putting the new row (0, 0)(0, 0) into the 0-th row
of the box V. Concurrently, the 1-th row (1, 0) of the box I is
connected to 0-th row (0, 0) of the box II, as the right value
of the brackets (1, 0) is equal to the left sequence number of
the 0-th row of the box II. After connecting, we put the result
(1, 0)(0, 0) into the 1-th row of box V. In the same way, the
box III is connected to the box IV and the result is put into
box VI. Notice that because of the parallelism of FPGA, the
box I and the box II get the results at the same time. All these
connecting operators just take one clock cycle in parallel.
Through repeating this process, the box V is connected to the
box VI and the result will be put into the box VII in the end.
This procedure is somehow similar to the method of Merge
Sort which influenced by the idea of Divide and Conquer. So
we call this method DFA transition merging.

After the box VII gets the result, a module, named “Vali-
date Module” (VM), picks out the correct path in the box VII
with the information of current state. If the current state is ‘i’,
the VM would select the i-th row. For example, if the current
state is 1, the VM selects the 1-th row of the box VII. That
is (1, 0)(0, 0)(0, 2)(2, 1). Obviously, the result is the same as
processed by traditional DFA lookup method in Fig.2 , which
proves the correctness of DFA-TM. Now we know that when
inputting characters “abcd” by order, the lookup process will
traverse state 0,0,2,1 by order. Thus, we can justify whether a
rule is matched, since the information about the lookup process
is known.

3) Benefits and weakness of DFA-TM

Benefits: We can use parallelism and pipeline to accelerate
this process. Thus we can consume 4 characters per time.
What’s more, we can scale up the number of boxes to
process more characters per time.

Supposing S represents the number of states, W represents
the max number of characters consuming per time. The number
of ASCII characters is N = 256. Then the memory consump-



tion is equal to formula (1), where M1 = S ∗ log2S ∗ 256
represents the size of original DFA transition table and M2 =
S ∗ log2S ∗W ∗2∗ (log2W +1) represents the logic resources
consumed by the process of DFA-TM. We express the ratio of
M to M1 as ρ.

M = M1+M2 = S∗log2S∗256+S∗log2S∗W∗2∗(log2W+1)
(1)

ρ = M/M1 = 1 +W ∗ (log2W + 1)/128 (2)

Assuming that W = 4, then ρ = 1 + 0.09375. It means
that the method of DFA-TM just only consumes 9.38% logic
resources more than the original DFA transitions table, while
it can achieve 4-fold speed matching performance than the
traditional DFA lookup method. The method of DFA-TM is
also much more efficiency than the stride doubling algorithms
which have been proposed in [9][10](i.e. k-DFA named in [9]),
since the memory consumed by the k-DFA is exponentially
increasing compared with the original DFA transitions table.
That is M3 ≈ S ∗ log2S ∗ NW . It leads to the k-DFA can’t
be effectively implemented on the current chip with limited
capacity. Although the traditional compression algorithms can
reduce the memory consumption, it has little effect on the
k-DFA. What’s worse, compression algorithms result in per-
formance decrease. From the formula (2) ,it infers that the
memory consumption of our method is O(Wlog2W ) increase
while k-DFA is O(NW ) increase. Thus the method of DFA-
TM is much more efficiency than the k-DFA.

Weakness: The disadvantage of DFA-TM is that it can
only be implemented by using logic resources (e.g. flip-flop
(FF) and look-up table (LUT)) but not memory at present.
If the number of states is too large, the compiler tool can’t
Place&route (a stage of Xilinx ISE tool).

B. Part II: the model and the process of PiDFA

As discussing in part I, if the number of states is too large,
the compiler tool can’t implement our method effectively. In
order to solve this problem, we reduce the states implemented
by logic resources. We extract the few most frequent states
(top-k states) to be implemented by the method of DFA-TM
and store the rest of DFA transition table into BlockRAM,
which does not include the most frequent states and their
corresponding transitions.

1) Locality

Lots of previous works in the area of DFA matching has
been proposed [12][13]. In these works, the common idea is
that a bulk of the DFA transitions are concentrated around a
few DFA states. We call this phenomenon as “locality”. The
measure results of the locality are shown in Fig.8.

Data sets are publicly available at MIT Lincoln Lab [14],
named directory (3.0MB), fs listing (6.6MB), hume evt
(4.3MB), inside (161.2MB), outside (155.7MB) and pascal
(5.4MB). The regex rules are all publicly available real-life rule
sets, such as Bro, Snort and L7-filter. Here we just present the
results measured by data set outside.

In Fig.8, top-k represents the k most frequent states. From
this figure, we get more than 99% frequency access on a few
most frequent states most of the time. In the experiment, we
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Fig. 8. Locality measured by data set outside of MIT Lincoln Lab.

Fig. 9. Model of PiDFA: DFA transition table is divided into HFVS and
LFVS.

find two phenomenons: 1) a bulk of the DFA transitions are
concentrated around a few DFA states of every rule set; 2)
different rule sets have different most frequent states. From
Fig.8, it implies if the number of the most frequent states is
greater than 64, then almost all of the transitions will always
traverse among these states except for bro217.

2) Model of PiDFA

The model of PiDFA is shown in Fig.9. We extract the
most frequent states and store them into the “High Frequency
Visit States” (HFVS) module. The rest states are stored into
the “Low Frequency Visit States” (LFVS) module. Measured
by real cases, most of the input characters can be processed
by the HFVS. If failed, the process will jump to the “Fail
Controller” (FC) module to access the LFVS. After finishing
matching, the process will return to the HFVS and continue
the next round process.

3) Lookup procedure for PiDFA

We reorganize the DFA transition table and divide it into
HFVS and LVFS. Then we add flag bits for each column
of HFVS, just as shown in Fig.10 and Fig.11. The flag bit
represents whether the value of corresponding state is out of
range of the states in the HFVS. If the value is larger than the
max sequence number of states, corresponding flag bit is set

Fig. 10. Divide DFA transition table into HFVS and LFVS.

Fig. 11. Add flag bits for each column of the HFVS.



Fig. 12. Get the corresponding columns and corresponding flag bits from
DFA transition table and the box of flag bits by T (“abcd”), and fill them
into corresponding box.

Fig. 13. Merging transitions between the box I and the box II, then put the
results into the box V; merging transitions between the box III and the box
IV, then put the results into the box VI.

to 1. Otherwise it is set to 0. For example, as shown in Fig.11,
the 2-th row of the box c is 3. That is larger than the max
state sequence number of HFVS (the max sequence number
of states is 2). So the corresponding flag bit is set to 1 in the
corresponding flag box.

In Fig.12, the 2-th row of the box III is (2, 3). The
corresponding flag bit is 1 and the right value is 3. The flag
bit implies that 3 is larger than the max sequence number of
states in the HFVS. So we just put the 2-th row of the box
III and the 2-th row of the box IV into the box VI, and set
the corresponding flag bit of the 2-th row of box VI to 1. The
rest rows of the box III and the rest rows of the box VI are
processed by the same way as the process of DFA-TM, as
shown in Fig.13.

Repeating this process, the final connecting results are
shown in Fig.14. Then the VM selects the correct result with
the current state. For example, if the current state is 0, VM
selects the row (0, 0)(0, 0)(0, 2)(2, 1). But if the current state
is 2, VM selects the row (2, 2)(2, 2)(2, 3)(2, 1). It checks out
the flag bit at the same time and finds that the corresponding
flag bit is 1. That means in this row, there must be some values
larger than the max sequence number of states in HFVS. So
VM quits the row (2, 2)(2, 2)(2, 3)(2, 1) and uses the byte
stream T = “abcd” to access the LFVS. Similarly, if current
state is larger than 2, then VM will directly use the byte stream

Fig. 14. Merging transitions between the box V and the box VI, then put
the results into the box VII.

Fig. 15. PiDFA engine with two parts: Success Part and Failure Part.

T to access the LFVS.

IV. HARDWARE IMPLEMENTATION

A. Design an engine for PiDFA

In order to reduce the memory consumption, we use
compression algorithms to work with our PiDFA. The PiDFA
engine consists of 8 parts: Chars Input Module (CIM), H-
FVS, Transition Merging Module (TMM), Select Path Module
(SPM), Verification Module (VM), Pipeline Controller (PCM),
Compression Algorithm Controller Module (CACM), LFVS,
as shown in Fig.16. The five parts of Success Part run in
pipeline if there is not any state’s value larger than the max
sequence number of states in HFVS during validated by the
VM. Otherwise, VM sends a signal “halt” to the PCM. After
receiving the signal, the PCM notice the CIM, SPM and TMM
to keep in the current context. Concurrently, the byte stream
T , which are stored in a buffer (not show in this figure), and
the current state will be sent to the CACM to access between
the LFVS and the HFVS. When the lookup procedure finishes,
the LFVS stores the next state into the buffer. Meanwhile, it
sends a signal “continue” to the PCM. This signal notices
the CIM, SPM, and TMM to continue to work at next round
process. Since most input characters are proccessed in HFVS,
the LFVS could not be accessed at most time. As a result, the
PiDFA can achieve high throughput.

B. Benefits and weakness of PiDFA

1) Benefits of PiDFA

As discussing in section III, only a few most frequent
states are implemented by LUT and FF. The rest states of
DFA transitions table are stored in BlockRAM. Supposing
S represents the number of states. HS represents the most
frequent states. LS represents the less frequent states. W
represents the size characters of T (i.e. the input characters
per time). The number of ASCII characters is N = 256. Thus
we get these formulas as follows.

ML = LS ∗ log2S ∗ 256 (3)

MH = HS∗log2S∗256+HS∗log2S∗W ∗2∗(log2W+1) (4)

Mf lag = HS ∗ 1 ∗ 256 +HS ∗ (2W − 1) (5)

ρ = (ML +MH +Mflag)/(S ∗ log2S ∗ 256) (6)



Where ML represents the size of LFVS implemented by
BlockRAM and MH represents the logic resources consuming
by Success Part. Mflag represents the size of flag bits. Thus
the ratio of the size of original DFA transition table to ML

is shown as formula (6). If S � HS and W is not much too
large, then ρ ≈ 1. That means PiDFA just consumes a small
amount of LUT and FF resources more than the original DFA
transition table, while it can consume W input characters per
time.

V. PERFORMANCE EVALUATION

The experiments are performed on an Ubuntu 12.4 oper-
ating system (CPU: i5-3470 Core, 3.20 GHz; Memory: 8G).
The evaluation tool is Xilinx ISE 14.7. Hardware simulation is
based on a Xilinx Virtex-7 FPGA chip (XC7V X690T ) with
693, 120 logic cells (LCs), and 52, 920Kb BlockRAM.

The traditional DFA, the D2FA (restrict the depth of
D2FA to 1) and the ClusterFA are mainly implemented by
BlockRAM (i.e. it consumes little logic resources), while the
PiDFA is implemented by LUT, FF and BlockRAM together.
Therefore, we separately evaluate the usage of LUT and FF
consumed by PiDFA, and then we compare the PiDFA with
other algorithms in terms of BlockRAM consumption.

We set the H S equal to 64 (i.e. top-k is 64) and get
the regex rules from Bro, Snort and L7-filter. Data sets are
publicly available at MIT Lincoln Lab, as described in section
III. Besides these data sets, we also capture 1.5GB raw packets
(i.e. raw data) from our network. We use the data sets of
directory, fs listing, inside and outside to extract the most
frequent states, while using hume evt, pascal and raw data
to measure throughput. In addition, we use the ClusterFA
algorithm to compress the states stored in LFVS. We call this
method Pi-ClusterFA or PIC. Then using 2PI, 4PI, 8PI, 16PI,
and 32PI represents 2, 4, 8, 16, and 32 input characters per
time for the PiDFA respectively. In the same way, 2PIC, 4PIC,
8PIC, 16PIC and 32PIC represents 2, 4, 8, 16, and 32 input
characters per time for the Pi-ClusterFA respectively. For the
exponentially increased memory requirement, we don’t treat
the k-DFA as an experimental object. Because it can’t be
implemented on the Xilinx Virtex-7 FPGA chip effectively.

1) speedup

We use hume evt, pascal and raw data to measure
the speedup. The values shown in TABLE I are the average
throughput of different algorithms. The best performance is
29.59Gbps , which is near 30-fold of the original DFA.
Compared with DFA, D2FA and ClusterFA algorithms, the
PiDFA shows better performance.

However, PiDFA has different effect on different rule sets.
As shown in TABLE I, the performance of rule set bro217
is lower than other rule sets. This is mainly caused by the
characters which need to access LFVS. Take 32PI for example,
when characters keep being processed in the Sucess Stage, it
just takes 1 step to handle 32 characters. But if there is a
character need to access LFVS, it takes 32 steps to handle 32
characters. So the more characters need to access LFVS, the
lower throughput of the PiDFA is. Besides, the performance
of PiDFA is better than the Pi-ClusterFA as shown in TABLE
II. The unit of throughput is Gbps.

2PI 4PI 8PI 16PI 32PI
0

0.5

1

1.5

2

2.5

lo
gi

c 
re

so
ur

ce
 u

sa
ge

 (%
)

FF
LUT

Fig. 16. LUT and FF consumption for PiDFA.
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Fig. 17. BlockRAM consumption for different algorithms.

2) Memory consumption

From Fig.16 , we can see that the PiDFA only consumes
a few FF and LUT resources of the whole logic resources of
Virtex-7 FPGA chip (the total FFs is 866400 and the total
LUTs is 433200). The consumption of logic resources is no
more than 2.3% of the total logic resources.

The total memory resources is 1470 blocks of BlockRAM.
The size of each block is 36Kb. The PiDFA is compared with
other algorithms in Fig.17. The Fig.17(a) shows the amount
of BlockRAM consumed by the PiDFA is almost the same as
the original DFA. The Pi-ClusterFA is compared with other
algorithm as shown in Fig.17(b). From Fig.17(b) , we can see
that the Pi-ClusterFA consumes less BlockRAM than other
algorithms in most rule sets. It implies that our PiDFA is
orthogonal to some other compression algorithms well.

VI. CONCLUSION

Traditional multi-stride DFA algorithm is limited by the
exponentially increased memory requirement. In this paper, we
improve the multi-stride algorithm by two methods: 1) the DFA
Transition Merging method and 2) the top-k state extraction
method. The PiDFA algorithm effectively solves the state
explosion problem led by the multiple characters input. In the
experiments, we use some real-life regular expression rule sets
from Snorts, Bro and L7-filter. The results show that PiDFA
achieves more than 30-fold better performance than original
DFA algorithm. What’s more, we validate the orthogonality



TABLE I. THROUGHPUT OF DIFFERENT ALGORITHMS

rulesets state No. DFA D2FA ClusterFA 2PI 4PI 8PI 16PI 32PI
bro217 6941 1.16 1.02 0.67 2.33 4.32 7.14 8.64 5.70
snort24 8577 1.15 1.08 0.53 2.31 4.53 8.75 16.72 29.59
snort31 4806 1.17 0.61 0.51 2.32 4.53 8.75 16.74 29.46
snort34 10194 1.12 0.67 0.51 2.31 4.51 8.68 16.71 29.31
l7 top7 11218 1.08 1.01 0.51 2.34 4.49 8.74 16.71 29.34

l7 2 2732 1.08 1.04 0.65 2.34 4.50 8.74 16.71 29.48
l7 3 2342 1.08 1.05 0.69 2.31 4.51 8.75 16.74 29.48
l7 5 2647 1.08 1.03 0.69 2.33 4.51 8.75 16.74 29.48
l7 6 4913 1.08 1.04 0.68 2.33 4.50 8.75 16.72 29.47
l7 7 5818 1.08 1.04 0.69 2.33 4.51 8.75 16.72 29.46

TABLE II. COMPARISON BETWEEN THE THROUGHPUT OF PIDFA(PI) AND PI-CLUSTERFA(PIC)

rulesets state No. 4PI 8PI 16PI 32PI 4PIC 8PIC 16PIC 32PIC
bro217 6941 4.32 7.14 8.64 5.70 4.10 5.29 4.92 3.39
snort24 8577 4.53 8.75 16.72 29.59 4.41 8.24 15.83 27.82
snort31 4806 4.53 8.75 16.74 29.46 4.41 8.24 15.96 27.93
snort34 10194 4.51 8.68 16.71 29.31 4.38 8.16 15.70 27.61
l7 top7 11218 4.49 8.74 16.71 29.34 4.24 8.07 15.59 27.51

l7 2 2732 4.50 8.74 16.71 29.48 4.37 8.16 15.70 27.60
l7 3 2342 4.51 8.75 16.74 29.48 4.38 8.17 15.76 27.75
l7 5 2647 4.51 8.75 16.74 29.48 4.38 8.17 15.74 27.71
l7 6 4913 4.50 8.75 16.72 29.47 4.36 8.14 15.70 27.61
l7 7 5818 4.51 8.75 16.72 29.46 4.37 8.17 15.70 27.61

of PiDFA and existing DFA compression algorithms. Imple-
mented with PiDFA algorithm, ClusterFA’s matching speed is
increased by 6-50 times while maintaining ClusterFA’s low
memory consumption. In addition, it must be pointed out that
the multi-stride DFA matching algorithms is meaningful to
the design of routers. In state-of-the-art router’s design, the
datapath’s width is usually more than 64 bits. It is a great
challenge to add the regular expression matching engine to the
main datapath of routers. Next,we will implement a practical
64-bit input PiDFA module and plug it into NetFPGA design
[15].
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